Graphing Rational Functions

A <u>rational function</u> are functions where $f(x) = \frac{a(x)}{b(x)}$, a(x) and b(x) are both polynomials and $b(x) \neq 0$.

f(x) has a <u>vertical asymptote</u> whenever b(x) = 0

f(x) has at most one **horizontal asymptote**

- If the degree of the numerator is greater than the denominator, there is no horizontal asymptote.
- If the degree of the numerator is less than the denominator, the horizontal asymptote is the x-axis (y = 0)
- If the degree of the numerator equals the denominator, the horizontal asymptote is the line $y = \frac{leading\ coefficient\ of\ numerator}{leading\ coefficient\ of\ denominator}$

Points of discontinuity (hole) – Occurs when the numerator and denominator have a common factor.

Examples:

1. Describe the asymptotes and points of discontinuity of
$$f(x) = \frac{x^2 + 4x - 5}{x + 5}$$

2. Given the function:
$$g(x) = \frac{(x-2)(3x+2)}{(x+4)(x-2)(x-6)}$$

- What are the equations of the asymptotes of this function?
- Determine if there are any points of discontinuity. Explain why or why not.
- Describe the end behavior as x approaches ∞ and as x approaches + ∞